Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters


Database
Language
Year of publication
Document type
Publication year range
1.
PLoS Negl Trop Dis ; 18(1): e0011901, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38271456

ABSTRACT

BACKGROUND: The occurrence of adverse drug events (ADEs) during dapsone (DDS) treatment in patients with leprosy can constitute a significant barrier to the successful completion of the standardized therapeutic regimen for this disease. Well-known DDS-ADEs are hemolytic anemia, methemoglobinemia, hepatotoxicity, agranulocytosis, and hypersensitivity reactions. Identifying risk factors for ADEs before starting World Health Organization recommended standard multidrug therapy (WHO/MDT) can guide therapeutic planning for the patient. The objective of this study was to develop a predictive model for DDS-ADEs in patients with leprosy receiving standard WHO/MDT. METHODOLOGY: This is a case-control study that involved the review of medical records of adult (≥18 years) patients registered at a Leprosy Reference Center in Rio de Janeiro, Brazil. The cohort included individuals that received standard WHO/MDT between January 2000 to December 2021. A prediction nomogram was developed by means of multivariable logistic regression (LR) using variables. The Hosmer-Lemeshow test was used to determine the model fit. Odds ratios (ORs) and their respective 95% confidence intervals (CIs) were estimated. The predictive ability of the LRM was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS: A total of 329 medical records were assessed, comprising 120 cases and 209 controls. Based on the final LRM analysis, female sex (OR = 3.61; 95% CI: 2.03-6.59), multibacillary classification (OR = 2.5; 95% CI: 1.39-4.66), and higher education level (completed primary education) (OR = 1.97; 95% CI: 1.14-3.47) were considered factors to predict ADEs that caused standard WHO/MDT discontinuation. The prediction model developed had an AUC of 0.7208, that is 72% capable of predicting DDS-ADEs. CONCLUSION: We propose a clinical model that could become a helpful tool for physicians in predicting ADEs in DDS-treated leprosy patients.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Leprosy , Adult , Humans , Female , Dapsone/adverse effects , Leprostatic Agents/adverse effects , Rifampin/therapeutic use , Drug Therapy, Combination , Case-Control Studies , Clofazimine/therapeutic use , Brazil/epidemiology , Leprosy/drug therapy , World Health Organization
2.
PLoS Pathog ; 13(1): e1006103, 2017 01.
Article in English | MEDLINE | ID: mdl-28056107

ABSTRACT

Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages.


Subject(s)
Autophagy/physiology , Leprosy/immunology , Skin/microbiology , Adult , Aged , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Interferon-gamma/immunology , Leprosy/pathology , Macrophages/immunology , Male , Microscopy, Electron, Transmission , Middle Aged , Mycobacterium leprae/immunology , Polymerase Chain Reaction , Skin/immunology , Skin/pathology , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL